a) 7 \large\frac{4}{95}

b) 7 \large\frac{19}{195}

c) 7 \large\frac{14}{495}

d) 7 \large\frac{3}{195}

correct answer is: c) 7 \large\frac{14}{495}

#### Explanation

7.0\;\dot2\;\dot8 *Here,* 7.0\;\dot2\;\dot8 means 7.0282828…

*Now,* Convert into vulgar fraction, such as 7.0\;\dot2\;\dot8, we can get the answer by adding the non-repeating portion (7.0) with the repeating portion (7.0\;\dot2\;\dot8 ).

We can represent ‘0.0\;\dot2\;\dot8’ as \large\frac{28}{990} because there are two digits repeating, and each digit can range from 0 to 9, making a total of 99 possible combinations. Therefore, 0.028=\large\frac{28}{990} *Now,* we add the non-repeating part (7) to the fraction we got from the repeating part:

7+\large\frac{28}{990}

\rightarrow \large\frac{6930+28}{990}

\rightarrow \large\frac{6958}{990}

\rightarrow \large\frac{3479}{495} _{[simplify]}

\rightarrow 7\large\frac{14}{495} **Ans:** 7 \large\frac{14}{495} .

##### Additional variations of this particular math query are:

**What is the vulgar fraction form of the decimal 7.028?****Find the vulgar fraction equivalent of the decimal 7.028.****Convert the decimal 7.028 into a fraction in its simplest form.****Convert recurring Decimals 7.028 to fraction.**