a) ₹\; 9548
b) ₹\; 7048
c) ₹\; 5048
d) ₹\; 4048
Correct answer is: a) ₹\; 9548
Explanation
Here, given fractions are \large\frac{7}{11} and \large\frac{7}{10}
LCM of 11 and 10 is = 110.
We will now equal the denominator :
\rightarrow\large\frac{7}{11}\normalsize=\large\frac{7\times10}{11\times10}\normalsize=\large\frac{70}{110}
\rightarrow\large\frac{7}{10}\normalsize=\large\frac{7\times11}{10\times11}\normalsize=\large\frac{77}{110}
Now,
\large\frac{70}{110} of property value be = ₹\;8680
\therefore 1 of property value be = ₹\left(8680\div\large\frac{70}{110}\right)
\therefore\large\frac{77}{110} of property value be = ₹\left(8680\div\large\frac{70}{110}\normalsize\times\large\frac{77}{110}\right)
\rightarrow ₹\left(8680\times\large\frac{110}{70}\normalsize\times\large\frac{77}{110}\right)
\rightarrow ₹\; 9548
Ans: \large\frac{7}{10} of property value be ₹\; 9548 .