Formula use: \left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3
Explanation
Here, given equation is :
\left(2x-3y\right)^3+3.\left(2x-3y\right)^2.\left(3y-x\right)+3.\left(2x-3y\right).\left(3y-x\right)^2+\left(3y-x\right)^3
Let,
\left(2x-3y\right)=a
\left(3y-x\right)=b
Now, putting the a & b value, we get :
a^3+3a^2b+3ab^2+b^3
\therefore\left(a+b\right)^3
So that,
\{\left(2x-3y\right)+\left(3y-x\right)\}^3
Or, \left(2x-3y+3y-x\right)^3
Or, x^3
\therefore x^3
Ans: x^3.