a) 0
b) 2
c) 1
d) 4
correct answer is: a) 0
Explanation
Here \large\frac{a}{b}+\frac{b}{a}\normalsize=1
\rightarrow\large\frac{a^2+b^2}{ab}\normalsize=1 [L.C.M ‘ab’]
\rightarrow a^2+b^2=ab [cross multiply]
We know,
a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)
\rightarrow a^3+b^3=\left(a+b\right)\left(ab-ab\right) [put the value of a2+b2]
\rightarrow a^3+b^3=\left(a+b\right)\times0
\therefore a^3+b^3=0
Ans: a^3+b^3=0