a) ₹470 & ₹410
b) ₹380 & ₹500
c) ₹420 & ₹460
d) ₹480 & ₹400
correct answer is: d) ₹480 & ₹400
Explanation
The ratio is \frac{1}{5} ∶ \frac{1}{6}
Let, Rajan gets \left(\frac{1}{5}\ \times\ x\right) or \frac{1x}{5} ₹
And Kamal gets \left(\frac{1}{6}\ \times\ x\right) or \frac{1x}{6} ₹
So, the total money Rajan and Kamal gets is
\rightarrow\left(\frac{1x}{5}\ +\ \frac{1x}{6}\right) ₹
\rightarrow\left(\frac{6x\ +\ 5x}{30}\right) ₹
\rightarrow\ \frac{11x}{30} ₹
According to the question,
\frac{11x}{30}\ =\ 880 ₹
\rightarrow\ 11x\ =\ \left(880\ \times\ 30\right) ₹
\rightarrow\ x\ =\ \frac{880\ \times\ 30}{11} ₹
\rightarrow\ x\ =\ 2400 ₹
\therefore Rajan gets =\ \frac{1x}{5} ₹ or \frac{1\ \times\ 2400}{5}\ =\ 480 ₹
And Kamal gets =\ \frac{1x}{6} ₹ or \frac{1\ \times\ 2400}{6}\ =\ 400 ₹
Ans: Rajan gets ₹480 and Kamal gets ₹400.