a) 9
b) 8
c) 6
d) 5
correct answer is: c) 6
formula use: (a-b)2 = a2 – 2.a.b + b2
Explanation
\frac{a}{b}\ =\ \frac{b}{a}\ –\ 2
\rightarrow\ \frac{a}{b}\ -\ \frac{b}{a}\ =\ -2
\rightarrow\ \frac{a^2\ -\ b^2}{ab}\ =\ -2 [L.C.M]
\rightarrow\ \left(\frac{a^2\ -\ b^2}{ab}\right)^2\ =\ \left(-2\right)^2 [add square in both side]
\rightarrow\ \frac{\left(a^2\ -\ b^2\right)^2}{\left(ab\right)^2}\ =\ 4
\rightarrow\ \frac{\left(a^2\right)^2\ -\ 2.a^2.\ b^2\ +\ \left(b^2\right)^2}{\left(ab\right)\left(ab\right)}\ =\ 4
\rightarrow\ \frac{a^4\ -\ 2.a^2.b^2\ +\ b^4}{a^2b^2}\ =\ 4
\rightarrow\ a^4\ -\ 2.\ a^2.\ b^2\ +\ b^4\ =\ 4a^2b^2 [cross multiply]
\rightarrow\ a^4\ +\ b^4\ =\ 4a^2b^2\ +\ 2a^2b^2
\rightarrow\ a^4\ +\ b^4\ =\ 6a^2b^2
\therefore\ a^4\ +\ b^4\ =\ 6a^2b^2
Now,
\frac{a^2}{b^2}\ +\ \frac{b^2}{a^2}
\rightarrow\ \frac{a^4\ +\ b^4}{a^2b^2} [L.C.M]
\rightarrow\ \frac{6a^2b^2}{a^2b^2} [ put the value of a4 + b4]
\rightarrow\ 6
Ans: \frac{a^2}{b^2}\ +\ \frac{b^2}{a^2}\ =\ 6.