a) ₹ 4788
b) ₹ 4888
c) ₹ 4798
d) ₹ 4900
correct answer is: a) ₹ 4788
Explanation
Here,
Amount =₹ 4491
Rate =11 %
Time = 2 years 3 months or \left(2+\frac{3}{12}\right) years or \frac{9}{4} years
We know, SI =\frac{P\times R\times T}{100}
And,
Amount =\ (principal\ +\ S.I)
\rightarrow Amount =\left(principle+\frac{P\times R\times T}{100}\right) [put S.I. value]
\rightarrow\;₹4491=\left(p+\frac{p\;\times\;11\;\times\;9}{100\;\times\;4}\right)
\rightarrow\;₹4491=\left(p+\frac{99p}{400}\right)
\rightarrow\;₹4491=\left(\frac{400p\;+\;99p}{400}\right)
\rightarrow\;₹4491=\frac{499p}{400}
\rightarrow\;499p=₹4491\times400 [cross multiply]
\rightarrow p=\frac{4491\times400}{499}
\rightarrow p =₹ 3600
\therefore Principal =₹ 3600
According to the question,
In 3 years at the same rate the amount will be =(principle\ +\ SI)
\therefore\left(principle+\frac{p\times r\times t}{100}\right) [put SI formula]
\rightarrow₹\left(3600+\frac{3600\;\times\;11\;\times\;3}{100}\right)
\rightarrow₹\left(3600\;+\;1188\right)
\rightarrow\ ₹ 4788
Ans: In 3 years the amount will be ₹ 4788 at the same rate.